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1. Introduction. If a random variable is exponentially distributed with

g EX and 42 EX2 , then P2 . 2112 Defining 2 _ I--11,/ it is

tempting to conjecture that under mild restrictions a distibution with

small p is approximately exponential. That restrictions are needed is

seen by the example, Pr(X-O) = Pr(X-1) = " , for which p = 0.2/

The scale invariant quantity, P, was suggested by Keilson [7)1. It

has an interesting interpretation. Define G(x) i F(s)ds, the

stationary 5ei ewal distribution corresponding to F. Then pG 1 /211

and p j F-- ij The parameter p is thus the scaled (by 4) distance

between p and 1G" For F exponential, F - G and thus p - pG.

The problem of interest can be stated as follows: Given a class

of distributions, along with the first two moments U and 12 find

upper bounds for sup IT(t)-e-t/pi in terms of P.

The above problem for the class of completely monotone distributions

(mixtures of exponential distributions) was studied by Keilson [7], Heyde

(5], Heyde and Leslie [6], Hall [4], and Brown [1].

Brown (1] considered the class of IMRL (increasing mean residual life)

distributions on [0,-) deriving:

(1.1) sup (t)e-t/,1 <
t

- (1.2) sup F(B)-G(B)I <
"- -- i-+i

* - B~8 '

(1.3 SUPGB -- e

S(1. 4) Sul) J'Et)-e G1 < P
t

2
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In (1.2) and (1.3) above B is the collection of Borel subsets of

:- [0,-). The quantity was shown to be the best upper bound for (1.1)

and (1.2) even within the subclass of completely monotone distributions.

Brown [21 considered the class of IFR (increasing failure rate)

distributions. It turns out that in this case (1.1) and (1.2) hold with

P replaced by 2P, and (1.3) and (1.4) hold with replaced by

p. The bound 2p is the best bound for (1.1), among bounds of the

form cpc.

In this paper we consider the problem for F NBUE (new better than

used in expectation) and for F NWUE (new worse than used in expectation).

These are the weakest among the commonly studied classes of aging distribu-

tions, and it is often easy to demonstrate that a distribution belongs to

one of these classes (NBUE and NWUE are defined in Section 2). The methods

of Brown ((i], [2]) do not generalize to these cases because the partial

ordering between F and G is too weak. Instead we use Fourier methods

adopted from Feller [3]. Our main result is that for F NBUE or NWUE:

(1.5) supl(t)-e -t/V < AP1/2

t

4V6

where A =-- 3.119. For the NBUE case we show that the best bound of

the form cpa  has a - 1/2 and 1 < c < . Thus the potential

improvement in (1.5) for F NBUE is the lowering of the constant from

3.119 to 1. This remains true even within the subclass of IFRA distri-

butions.

3
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2. Definitions and Preliminary Results. A distribution F on [0,-)

with F(0) < 1 and finite mean 1 is defined to be NBUE if

E(X-tlX>t) < u for all t > 0 with F(t) > 0. Since E(X-tlX>t) -

i G(t)/F(t), it follows that F is NBUE if and only if F is stochas-

. tically larger than G, the stationary renewal distribution corresponding

. to F. Define hG to be the failure rate function of G and note that

h (t) - [E(X-tlX>t)] - , thus F is NBUE if and only if hG(t) > P-1

forall t > 0 with F(t) > 0.

A distribution F on [0,0) with F(0) > 1 and finite mean

is defined to be NWUE if E(X-tlX>t) > u for all t > 0 with F(t) >0.

This is equivalent to F being stochastically smaller than G, and also

-1
tohG V

Lemma 2.1. If F is NBUE then G(t) <e - t/1 for all t > 0; for F NWUE,

G(t) Z e-t/P for all t > 0.

Proof. For F NBUE let t0  be the smallest number such that T(t0) 0,
with to 0 if F(t) > 0 for all t. Now h(t) > -1 for 0 < t < to ,

thus G(t) < e- t/h for 0 < t < tO. If t0 < - then for t >t0

G(t) 0 < at /1. If F is NW3E then F(t) > 0 for all t, for if

F(t0) - 0 for a finite t 0  then lim E(X-tlX>t) = 0 < p. Thus
t-*t

hG(t) <I for all t > 0 and G(t) > e t/  for all t > 0.

The following inequality (Lemma 2.2) is quite an important tool in

deriving our subsequent results. It relies heavily on a smoothing result

of Feller (3) (Lemma 1. p. 510).

44
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Lemma 2.2. Let F, F2 be probability distributions on [0, oa) with

finite means v and 42" Assume that F is either stochastically

larger or smaller than F2, and that F2  is differentiable with

Fj(x) < 4 for all x > 0. Then:

SuPF 1 (x-F 2 (x) I <A[ lil-U21/11 ] 1/2

x

where A 4 /7.

Proof. By Feller (3], Lemma 1 p. 510,

(2.3) S F'' -F WI <j 2 supIT 24

where A(x) F1 (x )-F2 (x)

TA) a -FA (t-x)VT (x)dx

. W. 1-cos Tx

Now, assume that F1  is stochastically larger than F2. Then:

-. co Tx
IT AMt1 -1ii- [F 1 (t-x)-F 2(t-x)] 1-osTx dxI

(F 1 (tx- 2tX11-cos 2Tx dx

r ° T

2 -r 1- 2



I,.

Thus from (2.3):

SUPIF 1u F(X-F 2 (x)I -- [T( l-12) + U24

24

Define L(T) = T(ji,-p 2) + 24T, then a routine differentiation argument

gives:

min L(T) - L[(24/TP1 (112- 11))I121 4,r6 [1-(,2/I) 1/2
T>O

and the result is proved.

If F2  is stochastically larger than F1 the analogous result follows2 1
by similar argument.

3. NBUE Results. Assume that F is NBUE. Recall that G(t) < F(t)

and G(t) < •-t/P for all t > 0, where G is the stationary renewal

-1
distribution corresponding to F. Note that G'(x) - F(x)/J < pi for

all x. Applying lemma 2.2 with F1 a F, F2 = G we obtain:

suplT(x)-G~x)1 < -) 4 1/2

By Brown [1] remark 4.14, for F NBUE:

(3.2) supIG(t)-e t/I < supIG(B)- P-le-t/hdt < P

Since F NBUE implies G(x) < min(F(x),e -x /1) for all x > 0,

it follows that:

6
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(3.3) supIi(x)_e-x/I< max(sup I )(x)-Z(,)I supIG(x)_e-x/ ) < 4Tr 1/2

Next, by simple computation:

(3.4) supIe-t/N-e-t/Gj 1-(p G/U) = p

Moreover, etP > max(G(t),e-t/PG), thus:

(3.5) supIU(t)-e-t/1GI < max(supIG(t)-e-t/li,suple-t/i-e-t/UGI) < 0•

We summarize these results in Theorem 3.6.

Theorem 3.6. Let F be NBUE. Then:

supl<(x)-e- I < AP

suplF(x)-(x)l < A1/2

suptG(x)-e-X/ 1 < supIG(B)- PB et/ <dtI< P

supjj(x)_eX/PG l I p

where A 4 and P -(u /2U

Corollary (3.7) below presents a limit theorem for NBUE distributions.

Corollary 3.7. Let {X_,n>1} be a sequence of NBUE random variables

with pn " , 2,n X and n = 1-(01 /22 ). Then X /1
n En "2n-En 2 n n n n

converges in distribution to an exponential distribution if and only if

7
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lir pn 0, in which case the mean of the limiting exponential distribution

equals 1.

Proof. The sufficiency of the condition limn p 0 follows from

Theorem 3.6. To prove necessity assume that lir Pr(Xn > tin)- e- c t  for

all t > 0, and some c > 0. Let Gn denote the stationary renewal

distribution corresponding to X and H the stationary renewal
n n

distribution corresponding to X /n . Then Hn(t) G n(tun ) and

1 1 - (t)dt.

Now:

'"' I
t

lia (t) 1 - ) Pr(Xn>sUn)ds - - -ct
"Z: n on n n n

Since Xn  is NBUE, so is Xn/I , and it thus follows from Lemma 2.1

that:

H (t) <e't for all n, t > 0.

Thus by the dominated convergence theorem:

lir 1a - (t)dt 1 - [l-{(l-e-Ct)/c}]dt

n-- n' FO nT

-O for c < 1

- 0 for cI

. for c > 1

But NBUE distributions satisfy 0 < p < 1/2 (since p >  by

Chebychev's inequality). Thus c equals 1 and lim pn * 0.

8



4. Potential Improvement of NBUE Bound. In the following example we have

a sequence of IFRA (and thus NBUE) distributions {F, n > 1}, with

sup- (x)-e -x/Un
nlim 1/2

n-)4  pn

It follows from this example and theorem 1 that the best bound of the form

4Vcp has CL = 1/2 and 1 < c < A6 . Thus the maximum potential improvement

1/2in the bound Ap is the lowering of A to 1. This statement holds for

the NBUE class as well as for the subclasses NBU and IFRA.

The distribution F is defined by:

-: J . t < !nn

. t >-.
n

Then:

-1 -

n +e

~~-2 n-lle- -

2  n +2(n +1)e

-1 1

nP 1-[ (l+2n(n+l)en )/2(1+ne -  ]

D = supl (x)-e-Xn 1 = 1-exp[-1/(+ne )] •

It follows that:

D n +O(n- )n

.4 9



and

-2 -2
p = n +o(n)

n4

Thus:

urnlIDli~ 1/21

|n-1

5. NWUE Results. Assume that F is NWUE. Applying Lemma 2.2 with

F F and F G we obtain:

1 2
2-

1/2
(5.1) sup!T(x)- (x)I <AP

We do not know of an analogue of (3.2) for NWUE distributions, but

applying Lemma 2.2 with F1(X) = and F2 = G we obtain:

(5.2) supIG(x)-e-X/p i < Ap/2

Since E(x) > max(F(x),e-C/p) it follows from (5.1) and (5.2) that:

(5.3) supLE(x)-e-x/ 01 A /2 •

Finally since e'/1 < min(G(t),e-t/hG) and supje-t/VG-e-t/pl <

.1-(P/1G) = p/p 'l, we obtain:

(5.4) sup[(x)-e-XLaGj < AO / •
.,.

p1
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U Corollary (3.7) does not hold for NWUE distributions. While (5.3)

insures that lim P = 0 is sufficient for convergence to an exponentiali% n

distribution, lim p = 0 is not a necessary condition. To see this

consider the distribution F with failure rate:

{ 2 0 < x < 1

h(x) -

2x. x>l.

Clearly F is DFR, with finite mean, and infinite second moment.

Now, for n-1,2,... define:

F (x) n-iF(x) + (1-n- 1)(1-e-x)

Since Fn  is a mixture of DFR distributions, Fn  is DFR and thus

NWUE. Clearly, Fn  converges to an exponential distribution with mean i.

However since F has infinite second moment, so does Fn, and thus

Sn = for all n.

6. Geometric Sums. Y is defined to be a geometric sum of X with

N
parameter p if Y can be represented as ZI Xi with {Xi,i >1}

i.i.d. as X, N geometrically distributed with parameter p, and

N and {Xi independent.

Lemma 6.1. If Y is a geometric sum of X with parameter p then

42 EY2)_ 2 2
-y M POX where py I(EY /2(Ey) )-l1 and IX (EX /2(EX) )-I.

a'

,.'c.11



". =E 2  o2 2
Proof. Define Ui EX, 12 , C Vat X, 2y EY, U2, Y  EY

2
and CT, Var Y. Note that:

(6.2) y =P /p

2 2-2 2-1

(6.3) ay qVt p + COp

Thus:

(6.4) P2,Y (1+q)112 2  +  p

From (6.2) and (6.4):

2 .2
(6.5) 112,y/21 = q+('.2p/211)

We see from (6.5) that p,/2 2_. <I if and only if 12/212 < 1.

2Assume that 112/2u 2 < 1. Then:

(6.6) 0 1-01,/2P2  P[I-(42/2u 
2  P x

2
Finally for P2/22 < 1:

42i2
(6.7) P (P,y/24 )-I) = =/242)_] p

and the result is proved.

12



Lenmma 6.8. Suppose that Y is a geometric sum of X where X is NBUE.

Then Y is NBUE. The analogous result holds for X NWUE.

Proof. Consider a renewal process with interarrival time distribution X.

Binomial sampling with probability p of the renewal epochs leads to an

embedded renewal process with interarrival time distribution Y. It

* * N-l * *
follows that Y can be represented as X + E Xi, where X (Y) has

1
the stationary distribution of X(Y). (X.I is i.i.d. as X, N is geometric

with parameter p, and X , {Xi} and N are independent. But, Y is

N-I
representable as X + E1  Xi with X, N and {X.1 independent. Now

if X is NBUE then X is stochastically greater than X so
"J'N-1 N-1

Y = X + E1  Xi is stochastically greater than Y =X + E1  Xi. and

Y is thus NBUE. The analogous argument obviously works for X NWUE.

Theorem 6.9. Let X be either NBUE or NWUE with finite second moment.

Suppose that Y is a geometric sum of X with parameter p. Then:

-1

-l 1/2
supjPr(Y> t)"e - t p  J < A(pp)

where A s-46 and p I(EX2/2(EX) 2)-I.

Proof. The result follows from Theorem 3.6, Lemma 6.7 and Lemma 6.8.

Note that Theorem 6.9 applies to defective renewal processes, which are

discussed in Feller (3], chapter XI, sections 6 and 7.

w*"
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